3,229 research outputs found

    The role of flow in green chemistry and engineering

    Get PDF
    Flow chemistry and continuous processing can offer many ways to make synthesis a more sustainable practice. These technologies help bridge the large gap between academic and industrial settings by often providing a more reproducible, scalable, safe and efficient option for performing chemical reactions. In this review, we use selected examples to demonstrate how continuous methods of synthesis can be greener than batch synthesis on a small and a large scale.Natural Sciences and Engineering Research Council of Canada (NSERC postdoctoral fellowship

    Coordinating pricing and inventory decisions in a multi-level supply chain: A game-theoretic approach

    Get PDF
    This paper concerns coordination of enterprise decisions such as suppliers and components selection, pricing and inventory in a multi-level supply chain composed of multiple suppliers, a single manufacturer and multiple retailers. The problem is modeled as a three-level dynamic non-cooperative game. Analytical and computational methods are developed to determine the Nash equilibrium of the game. Finally, a numerical study in computer industry is conducted to understand the influence of the market scale parameter and the components selection strategy on the optimal decisions and profits of the supply chain as well as its constituent members. Several research findings have been obtained. © 2010 Elsevier Ltd.link_to_subscribed_fulltex

    Tools for chemical synthesis in microsystems

    Get PDF
    Chemical synthesis in microsystems has evolved from simple proof-of-principle examples to become a general technique in academia and industry. Numerous such “flow chemistry” applications are now found in pharmaceutical and fine chemical synthesis. Much of the development has been based on systems employing macroscopic flow components and tubes, rather than the integrated chip technology envisioned by the lab-on-a-chip community. We review the major developments in systems for flow chemistry and discuss limitations underlying the development of chip-scale integrated systems

    Biological characteristics and mortality of western butterfish (Pentapodus vitta), an abundant bycatch species of prawn trawling and recreational fishing in a large subtropical embayment

    Get PDF
    The western butterfish (Pentapodus vitta) is numerous in the bycatch of prawn trawling and recreational fishing in Shark Bay, Western Australia. We have thus determined crucial aspects of its biological characteristics and the potential impact of fishing on its abundance within this large subtropical marine embayment. Although both sexes attained a maximum age of 8 years, males grow more rapidly and to a larger size. Maturity is attained at the end of the first year of life and spawning occurs between October and January. The use of a Bayesian approach to combine independent estimates for total mortality, Z, and natural mortality, M, yielded slightly higher point estimates for Z than M. This result indicates that P. vitta is lightly impacted by fishing. It is relevant that, potentially, the individuals can spawn twice before recruitment into the fishery and that 73% of recreationally caught individuals are returned live to the water

    Neurophysiology

    Get PDF
    Contains reports on seven research projects.National Institutes of Health (Training Grant 5 TO1 EY00090)Bell Laboratories (Grant

    Fishes of the Cocos (Keeling) Islands: new records, community composition and biogeographic significance

    Get PDF
    The Cocos (Keeling) Islands comprise the most isolated oceanic atoll in the tropical Indian Ocean and are situated 1000 km south-west of Indonesia. The remoteness of the islands has shaped the composition of marine communities but also limited scientific research. This study summarises field research on the marine fishes of the Cocos (Keeling) Islands over the last 14 years (2001–2014). Sixty-seven new records (from 28 families) are described and raise the total number of known fishes to 602 species from 84 families. New records span a variety of body sizes (3 cm TL Gobiodon unicolor to 500 cm TL Rhincodon typus), were observed in all major habitats,and found at both the Southern Atoll and at North Keeling Island. Notable new records include first records for the families Alopiidae, Coryphaenidae, Eleotridae, Gempylidae, Istiophoridae, Molidae, Polymixiidae, Rhincodontidae, Sillaginidae and Xiphiidae. Sampling from pelagic and deepwater (60–300 m) reef environments significantly increased the number of species described from these habitats. New records include species that have dispersed more than 2500 km (Centropyge acanthops) and dispersal ability appears to explain the lack of syngnathids and the high representation of acanthurids and holocentrids in the community. Some of the Indian Ocean species that have colonised the Cocos (Keeling) Islands now co-occur with their Pacific Ocean sister species, increasing the potential for hybridisation. Although the fish community of the Cocos (Keeling) Island resembles that of the Indo-West Pacific, the isolation and co-occurrence of Indian and Pacific Ocean species distinguishes it from all other locations

    Checklist and new records of Christmas Island fishes: the influence of isolation, biogeography and habitat availability on species abundance and community composition

    Get PDF
    Christmas Island (Indian Ocean) is an oceanic high island that is situated 300 km southwest of Java, Indonesia. From 2010 to 2014, the fish community of Christmas Island was surveyed using underwater visual surveys for shallow water (0–60 m) fishes, and line fishing (bottom fishing and trolling) for deepwater (60–300 m) and pelagic fishes. Forty-seven new records (from 22 families) were identified, thereby increasing the total number of fishes described from Christmas Island to 681 (from 91 families). Notable new records include the first records for the families Alopiidae, Anomalopidae, Muraenesocidae, Tetrarogidae and Trichonotidae, and the first reports of Pacific Ocean species Plectranthias yamakawai, and Polylepion russelli in the Indian Ocean. The ten most species-rich families accounted for 58% of the community and included: Labridae (13%), Pomacentridae (8%), Epinephelidae (6%), Acanthuridae (5%), Chaetodontidae (5%), Muraenidae (5%), Gobiidae (5%), Blenniidae (4%), Apogonidae (4%) and Scorpaenidae (3%). The majority (89%) of species inhabit shallow coral reefs, with deep reefs (60–300 m) and pelagic waters only accounting for 7% and 2% of fish community. Approximately 76% of thefishes are widespread Indo-Pacific species, 12% are Pacific Ocean species, 5% are circumtropical, 4% are Indian Ocean species and approximately 1% are endemic. Abundance surveys revealed that endemic species, and species at the edge of their geographic range, do not conform to terrestrial-based predictions of low abundance. The structure and composition of the Christmas Island fish community is influenced by three main factors. Firstly, the isolation of the island means that fishes with poor dispersal abilities (e.g., syngnathids) are underrepresented. Secondly, thebiogeographic position of the island results in a unique mixing of Indian and Pacific Ocean species. Thirdly, the lack of lagoonal habitats means that fishes that use these habitats (e.g., ophichthids, lethrinids, epinephelids) are underrepresented or have low abundance

    A Random Growth Model with any Real or Theoretical Degree Distribution

    Get PDF
    The degree distributions of complex networks are usually considered to be power law. However, it is not the case for a large number of them. We thus propose a new model able to build random growing networks with (almost) any wanted degree distribution. The degree distribution can either be theoretical or extracted from a real-world network. The main idea is to invert the recurrence equation commonly used to compute the degree distribution in order to find a convenient attachment function for node connections - commonly chosen as linear. We compute this attachment function for some classical distributions, as the power-law, broken power-law, geometric and Poisson distributions. We also use the model on an undirected version of the Twitter network, for which the degree distribution has an unusual shape. We finally show that the divergence of chosen attachment functions is heavily links to the heavy-tailed property of the obtained degree distributions.Comment: 23 pages, 3 figure

    Statistical Inference in a Directed Network Model with Covariates

    Get PDF
    Networks are often characterized by node heterogeneity for which nodes exhibit different degrees of interaction and link homophily for which nodes sharing common features tend to associate with each other. In this paper, we propose a new directed network model to capture the former via node-specific parametrization and the latter by incorporating covariates. In particular, this model quantifies the extent of heterogeneity in terms of outgoingness and incomingness of each node by different parameters, thus allowing the number of heterogeneity parameters to be twice the number of nodes. We study the maximum likelihood estimation of the model and establish the uniform consistency and asymptotic normality of the resulting estimators. Numerical studies demonstrate our theoretical findings and a data analysis confirms the usefulness of our model.Comment: 29 pages. minor revisio

    Conformations of Randomly Linked Polymers

    Full text link
    We consider polymers in which M randomly selected pairs of monomers are restricted to be in contact. Analytical arguments and numerical simulations show that an ideal (Gaussian) chain of N monomers remains expanded as long as M<<N; its mean squared end to end distance growing as r^2 ~ M/N. A possible collapse transition (to a region of order unity) is related to percolation in a one dimensional model with long--ranged connections. A directed version of the model is also solved exactly. Based on these results, we conjecture that the typical size of a self-avoiding polymer is reduced by the links to R > (N/M)^(nu). The number of links needed to collapse a polymer in three dimensions thus scales as N^(phi), with (phi) > 0.43.Comment: 6 pages, 3 Postscript figures, LaTe
    • …
    corecore